A Variational Approach to Discontinuous Problems with Critical Sobolev Exponents

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasilinear Elliptic Problems with Critical Exponents and Discontinuous Nonlinearities

Using a recent fixed point theorem in ordered Banach spaces by S. Carl and S. Heikkilä, we study the existence of weak solutions to nonlinear elliptic problems −diva(x,∇u) = f (x,u) in a bounded domain Ω ⊂ Rn with Dirichlet boundary condition. In particular, we prove that for some suitable function g , which may be discontinuous, and δ small enough, the p -Laplace equation −div(|∇u|p−2∇u) = |u|...

متن کامل

A Nonlinear Elliptic PDE with Two Sobolev-Hardy Critical Exponents

In this paper, we consider the following PDE involving two Sobolev-Hardy critical exponents,

متن کامل

Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential

Let Ω ⊂ RN be a smooth bounded domain such that 0 ∈ Ω , N ≥ 5, 0 ≤ s < 2, 2∗(s) = 2(N−s) N−2 . We prove the existence of nontrivial solutions for the singular critical problem − u − μ u |x |2 = |u| 2∗(s)−2 |x |s u + λu with Dirichlet boundary condition on Ω for all λ > 0 and 0 ≤ μ < ( N−2 2 )2 − ( N+2 N )2. © 2005 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33

متن کامل

p-Laplacian problems with critical Sobolev exponent

We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2002

ISSN: 0022-247X

DOI: 10.1006/jmaa.2001.7698