A Variational Approach to Discontinuous Problems with Critical Sobolev Exponents
نویسندگان
چکیده
منابع مشابه
Quasilinear Elliptic Problems with Critical Exponents and Discontinuous Nonlinearities
Using a recent fixed point theorem in ordered Banach spaces by S. Carl and S. Heikkilä, we study the existence of weak solutions to nonlinear elliptic problems −diva(x,∇u) = f (x,u) in a bounded domain Ω ⊂ Rn with Dirichlet boundary condition. In particular, we prove that for some suitable function g , which may be discontinuous, and δ small enough, the p -Laplace equation −div(|∇u|p−2∇u) = |u|...
متن کاملA Nonlinear Elliptic PDE with Two Sobolev-Hardy Critical Exponents
In this paper, we consider the following PDE involving two Sobolev-Hardy critical exponents,
متن کاملSolutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential
Let Ω ⊂ RN be a smooth bounded domain such that 0 ∈ Ω , N ≥ 5, 0 ≤ s < 2, 2∗(s) = 2(N−s) N−2 . We prove the existence of nontrivial solutions for the singular critical problem − u − μ u |x |2 = |u| 2∗(s)−2 |x |s u + λu with Dirichlet boundary condition on Ω for all λ > 0 and 0 ≤ μ < ( N−2 2 )2 − ( N+2 N )2. © 2005 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33
متن کاملp-Laplacian problems with critical Sobolev exponent
We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2002
ISSN: 0022-247X
DOI: 10.1006/jmaa.2001.7698